252 research outputs found

    Secret-Message Transmission by Echoing Encrypted Probes -- STEEP

    Full text link
    This paper examines the properties of the lower and upper bounds established by Maurer, Ahlswede and Csiszar (MAC) for secret-key capacity in the case of channel probing over single-input and single-output (SISO) channels. Inspired by the insights into MAC's bounds, a scheme called secret-message transmission by echoing encrypted probes (STEEP) is proposed. STEEP consists of two phases: in phase 1, Alice sends random probes over a probing channel to Bob; in phase 2, Bob echoes back an estimated version of the probes, but encrypted by a secret, over a high-quality return channel. Provided that Eve is unable to obtain the exact probes transmitted by Alice in phase 1, STEEP guarantees a positive secrecy rate from Bob to Alice over the return channel even if Eve's channel strength during channel probing is stronger than Bob's. STEEP is applicable to both physical layer and upper layers in connected networks

    High Rate/Low Complexity Space-Time Block Codes for 2x2 Reconfigurable MIMO Systems

    Full text link
    In this paper, we propose a full-rate full-diversity space-time block code (STBC) for 2x2 reconfigurable multiple-input multiple-output (MIMO) systems that require a low complexity maximum likelihood (ML) detector. We consider a transmitter equipped with a linear antenna array where each antenna element can be independently configured to create a directive radiation pattern toward a selected direction. This property of transmit antennas allow us to increase the data rate of the system, while reducing the computational complexity of the receiver. The proposed STBC achieves a coding rate of two in a 2x2 MIMO system and can be decoded via an ML detector with a complexity of order M, where M is the cardinality of the transmitted symbol constellation. Our simulations demonstrate the efficiency of the proposed code compared to existing STBCs in the literature.Comment: arXiv admin note: text overlap with arXiv:1505.0646

    High-Rate Space Coding for Reconfigurable 2x2 Millimeter-Wave MIMO Systems

    Full text link
    Millimeter-wave links are of a line-of-sight nature. Hence, multiple-input multiple-output (MIMO) systems operating in the millimeter-wave band may not achieve full spatial diversity or multiplexing. In this paper, we utilize reconfigurable antennas and the high antenna directivity in the millimeter-wave band to propose a rate-two space coding design for 2x2 MIMO systems. The proposed scheme can be decoded with a low complexity maximum-likelihood detector at the receiver and yet it can enhance the bit-error-rate performance of millimeter-wave systems compared to traditional spatial multiplexing schemes, such as the Vertical Bell Laboratories Layered Space-Time Architecture (VBLAST). Using numerical simulations, we demonstrate the efficiency of the proposed code and show its superiority compared to existing rate-two space-time block codes

    DC-Informative Joint Color-Frequency Modulation for Visible Light Communications

    Full text link
    In this paper, we consider the problem of constellation design for a visible light communication (VLC) system using red/green/blue light-emitting diodes (RGB LED), and propose a method termed DC-informative joint color-frequency modulation (DCI-JCFM). This method jointly utilizes available diversity resources including different optical wavelengths, multiple baseband subcarriers, and adaptive DC-bias. Constellation is designed in a high dimensional space, where the compact sphere packing advantage over lower dimensional counterparts is utilized. Taking into account multiple practical illumination constraints, a non-convex optimization problem is formulated, seeking the least error rate with a fixed spectral efficiency. The proposed scheme is compared with a decoupled scheme, where constellation is designed separately for each LED. Notable gains for DCI-JCFM are observed through simulations where balanced, unbalanced and very unbalanced color illuminations are considered.Comment: submitted to Journal of Lightwave Technology, Aug. 5th 201

    Hybrid Millimeter-Wave Systems: A Novel Paradigm for HetNets

    Full text link
    Heterogeneous Networks (HetNets) are known to enhance the bandwidth efficiency and throughput of wireless networks by more effectively utilizing the network resources. However, the higher density of users and access points in HetNets introduces significant inter-user interference that needs to be mitigated through complex and sophisticated interference cancellation schemes. Moreover, due to significant channel attenuation and presence of hardware impairments, e.g., phase noise and amplifier nonlinearities, the vast bandwidth in the millimeter-wave band has not been fully utilized to date. In order to enable the development of multi-Gigabit per second wireless networks, we introduce a novel millimeter-wave HetNet paradigm, termed hybrid HetNet, which exploits the vast bandwidth and propagation characteristics in the 60 GHz and 70-80 GHz bands to reduce the impact of interference in HetNets. Simulation results are presented to illustrate the performance advantage of hybrid HetNets with respect to traditional networks. Next, two specific transceiver structures that enable hand-offs from the 60 GHz band, i.e., the V-band to the 70-80 GHz band, i.e., the E-band, and vice versa are proposed. Finally, the practical and regulatory challenges for establishing a hybrid HetNet are outlined.Comment: 12 pages, 5 Figures, IEEE Communication Magazine. In pres

    Optimal Pilots for Anti-Eavesdropping Channel Estimation

    Full text link
    Anti-eavesdropping channel estimation (ANECE) is a method that uses specially designed pilot signals to allow two or more full-duplex radio devices each with one or more antennas to estimate their channel state information (CSI) consistently and at the same time prevent eavesdropper (Eve) with any number of antennas from obtaining its CSI consistently. This paper presents optimal designs of the pilots for ANECE based on two criteria. The first is the mean squared error (MSE) of channel estimation for the users, and the second is the mutual information (MI) between the pilot-driven signals observed by the users. Closed-form optimal pilots are shown under the sum-MSE and sum-MI criteria subject to a symmetric and isotropic condition. Algorithms for computing the optimal pilots are shown for general cases. Fairness issues for three or more users are discussed. The performances of different designs are compared
    • …
    corecore